
Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 1

From Concept to Deployment: Building a
Web App with an AI-Powered Backend

Introduction, Motivation & Objective
After creating Cosmic Voyager, my retro-inspired web game designed to offer a thrilling
and accessible gameplay experience, I felt compelled to explore its potential beyond
traditional player interactions. My next objective was to develop an AI mode, enabling an
intelligent agent to autonomously play the game. This presented a fascinating challenge:
building a system that could navigate the game environment, dodge obstacles, and
maximize its score—all without human intervention. If you want to learn more about the
development, feel free to read the separate story on that right [here]. See the original web
interface below.

To achieve this, I turned to Deep Reinforcement Learning (DRL), a cutting-edge area of
artificial intelligence known for its ability to train agents to solve complex problems in
simulated environments. DRL has been successfully applied in various AI agents to
master virtual games, from classic arcade challenges to modern 3D simulations, making
it an ideal approach for this project. Not only did this endeavor align with my fascination

https://andreas-t-bachmeier.github.io/Files/Creation%20of%20Cosmic%20Voyager_AndreasTBachmeier.pdf

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 2

for DRL, but it also provided an opportunity to gain hands-on experience in applying this
powerful technology to a practical, interactive system.
The goal was ambitious but exciting: extend Cosmic Voyager into a full-fledged machine
learning application to showcase the capabilities of reinforcement learning in creating
intelligent, autonomous systems. This project promised to deepen my understanding of
AI, enhance my technical skill set, and merge my passion for web development with
state-of-the-art machine learning techniques.
In the following, I will discuss the technical details. Have fun!

Application Design

Building upon the foundation of Cosmic Voyager, I transformed the web game into a fully
functional machine learning application by integrating a deep reinforcement learning
(DRL) model. The software architecture of Cosmic Voyager is structured around a clear
modular design comprising three primary components: the frontend, middleware, and
backend, all deployed within a single Docker container on the Hugging Face Spaces
platform.

Frontend (Web Game)
The web game serves as the frontend, developed with HTML, CSS, and JavaScript. It
operates entirely within the user's browser, rendering the game environment, managing
user interactions, and visualizing gameplay. Players can access the game through a
public URL and interact with it via any web browser, ensuring broad accessibility.
The web game is structured around a single-page application model where HTML, CSS,
and JavaScript collectively handle rendering, user interaction, and game logic. The core
JavaScript code listens for user events—like keyboard presses or screen touches—to
move the on-screen astronaut and uses setInterval loops to manage the continuous flow
of obstacle generation, collision detection, and score updates. All visual elements (the
astronaut, dynamically added obstacles, and the score displays) are part of the DOM,

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 3

which is styled via an external CSS file. When AI mode is activated, the client periodically
captures the current game state via screenshots of the game area, shrinks and converts
the canvas to grayscale, and then accumulates these frames in a buffer. Once the buffer
is filled, the client sends the stacked frames via a JSON POST request to a backend
endpoint (e.g., “/predict”) for inference. The model in the backend responds with an
action (move left, move right, or no movement), which the front-end applies to the
astronaut’s position. This loosely couples the client-side game engine with the server-
side machine learning model. State management, such as current score, high scores,
and AI toggling, is maintained in JavaScript variables and displayed on-screen in real
time. The architecture thus allows seamless interplay between manual control and AI-
driven actions, all within a single webpage powered by event-driven JavaScript, interval-
based game loops, and external AI inference calls.
See the following UML class diagram to learn more about the architecture of the web
game.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 4

Explanation of Components

1. GameController
Acts as the central “engine” of the game. It controls the main loops (using
setInterval), handles the score and time increments, checks for collisions,
spawns obstacles, and coordinates transitions between game states (start, reset,
game over).

2. Astronaut
Encapsulates logic for player movement (or AI-driven movement). In the code, this
is partly done by calling moveAstronaut() to adjust the astronaut’s position within
the game area.

3. Obstacle
Handles the creation of different obstacle types (asteroids, planets, supernovas,
black holes), their properties (images, size, position), and updates needed (e.g.,
growth or oscillation). Although in the code these are created on the fly,
conceptually we can think of them as a class or a responsibility.

4. UIManager
Manages user interface concerns such as keyboard activation, touch controls for
mobile, updating background color, and general display/hide operations. In the
code, these responsibilities appear scattered across helper functions but can be
grouped conceptually as UI concerns.

5. AIAgent
Handles the AI mode by capturing the game state (with html2canvas), stacking
frames, sending a request (fetch('/predict')) to the backend, and applying the
returned action (move left, right, or do nothing). This is the bridge between the
local JavaScript game and a remote AI inference service.

6. HTMLDocument
Represents the DOM elements—buttons, game area, score displays, and so on.
While not literally a “class” in the code, we can show the DOM or external
environment in UML to demonstrate the dependencies and references. This
clarifies that these UI elements are manipulated by the controllers and managers.

Middleware (Inference API)
The Inference API (application programming interface) functions as the intermediary
between the frontend and backend. Developed in Python using the FastAPI framework, it
employs a server that loads a trained deep reinforcement learning model at application
startup and receives incoming data in the form of multiple image frames. Each frame is
transformed into a standardized format and appended into a collection of stacked arrays,
which the model then processes to produce a corresponding action output. The API
returns the action as a succinct JSON response, incorporating basic validation to ensure

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 5

correct data input. In addition, it serves static content from a designated directory and
uses appropriate middleware to manage cross-origin requests, making it suitable for
seamless integration into real-time interactive systems.
See the following UML class diagram to learn more about the architecture of the
Inference API.

Explanation of Components

1. InferenceAPI (the FastAPI-based application) defines the /predict endpoint, which
calls the Pipeline instance.

2. Pipeline loads a pre-trained PPOModel (DRL model) and uses it for inference once
it has preprocessed the incoming frames.

3. ObservationInput is a data model used for validating the request body.

Backend (ML Model)
The ML/DRL model constitutes the backend, providing the AI agent's decision-making
capabilities. Trained using DRL algorithms and OpenAI’s Gymnasium framework, the
model evaluates the current game state and determines optimal actions to navigate the
game's challenges. This integration enables the AI agent to play the game autonomously,
showcasing the practical application of reinforcement learning in interactive
environments.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 6

Implementation of the Web Game as Frontend
When I developed Cosmic Voyager, my goal was to create an engaging and accessible
gaming experience that could not only serve as a platform for honing my web
development skills but also provide a foundation for building a machine learning
application. I wanted the game to evoke nostalgia with its retro-inspired 2D design while
ensuring it was easily accessible across devices.
The gameplay centers around an astronaut navigating through an obstacle-filled space
environment. I designed the controls to be intuitive, allowing players to use a keyboard or
touch inputs to guide the astronaut past asteroids, planets, and other cosmic hazards.
To keep the game dynamic and challenging, I incorporated features like increasing
obstacle complexity and randomized patterns, ensuring that no two play sessions felt the
same. I added a scoring system to motivate players, along with visual elements like
background changes to enhance the sense of progression.

I built the game using HTML, CSS, and JavaScript. HTML provided the structure, CSS
handled the styling, and JavaScript brought the game to life with logic for obstacle
generation, collision detection, and adaptive controls. For the visual assets, I used DALL-
E to create the icons and backgrounds, then optimized them to maintain a cohesive and
polished cosmic theme.
One of the biggest challenges I faced was ensuring the game worked seamlessly across
various devices. I had to make careful adjustments to the layout and controls to create a
truly responsive design. Another challenge was balancing the game’s difficulty. Through
iterative testing, I fine-tuned the obstacle speed and frequency to strike the perfect
balance between being fair and challenging.
The final product was a functional, visually appealing, and universally accessible game.
It not only demonstrated the potential of combining creativity with modern development
tools but also laid the groundwork for integrating a machine learning agent. Cosmic
Voyager became more than just a game — it became a platform for exploring the exciting
intersection of web development and artificial intelligence.
To enable the integration of AI mode into my web game, I made several enhancements to
the frontend. One of the key changes I introduced was a new button that allows users to
activate AI mode directly from the interface. This addition made it possible to switch
seamlessly between manual and AI gameplay modes, providing a flexible and intuitive
experience. I also added a separate high-score display specifically for the AI agent,
ensuring that its performance was tracked independently from the player's score. This
not only highlighted the AI's capabilities but also gave me a clear way to measure its
success. See the updated web interface below.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 7

I extended the game logic in the frontend to handle the functionality required for the AI
mode. I implemented a process to capture the current game state and send it to the
backend via an API, where the AI model would decide on the best action to take. These
decisions were then applied in real-time, enabling the AI agent to autonomously navigate
the game and strive for high scores. I adapted the reset and start mechanisms to ensure
they worked smoothly across both manual and AI modes, making the transition between
them seamless for users.
Through these adaptations, I transformed the game into a dual-mode system that
supports both interactive and automated gameplay. This evolution not only improved the
frontend but also turned the game into a platform where I could explore reinforcement
learning in action, while comparing human and AI performance in a fun and engaging way.

The following sequence diagram shows the cyclical nature of AI inference: capturing
frames from the DOM, batching them, sending them to the server, receiving an action,
and finally applying that action in the GameController.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 8

Development of the Machine Learning Model as Backend

Problem Description and Objective
Training an AI agent to navigate the Cosmic Voyager environment posed an exciting
challenge. The objective was to create a system that could play the game autonomously,
continuously improving its performance over time. The agent needed to learn the
underlying mechanics of the game, such as avoiding obstacles and positioning itself
effectively within the game area. This required it to develop strategies that maximize
survival and optimize its score.
The problem was defined by the dynamic nature of the environment. The agent faced a
barrage of obstacles, increasing in complexity and frequency as the game progressed. To
succeed, it had to make quick decisions in real-time, leveraging the information from its
surroundings to predict the best course of action. The ultimate goal was for the agent to
learn these mechanics and strategies on its own through continuous interaction with the
game, gradually getting better with each iteration and hence maximising the score.

Solution
To solve the problem of training an AI agent to master Cosmic Voyager, I turned to Deep
Reinforcement Learning (DRL), a cutting-edge approach that has been widely used for
training agents in virtual game environments. DRL combines reinforcement learning (RL)
with deep neural networks to enable agents to learn complex tasks by interacting with an

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 9

environment. In this paradigm, an agent observes the environment's state, selects an
action, and receives feedback in the form of a reward. This feedback guides the agent in
learning to take better actions over time. The goal is for the agent to maximize cumulative
rewards, which represent successful behavior in the environment.
In DRL, a neural network approximates either the agent’s policy (a strategy mapping
states to actions) or the value function (estimating future rewards from a state). Unlike
traditional supervised learning, where the model learns from labeled data, DRL operates
through trial and error. The agent explores the environment, experimenting with actions
to discover strategies that yield the highest rewards. Over many iterations, the agent
converges toward optimal behavior by balancing exploration of new strategies and
exploitation of known successful ones.
This approach has been highly effective in applications such as robotics, video games,
and autonomous systems, where agents operate in dynamic environments requiring real-
time decision-making and adaptation.

General Approach to Training an Agent
1. Defining the Virtual Environment

The first step is to create a virtual environment that serves as the training ground
for the agent. This environment must provide observations representing its state,
accept actions from the agent, and compute rewards based on the agent’s
performance. The environment encapsulates the rules, dynamics, and
objectives the agent must learn to navigate.

2. Designing the Reward Function
A well-defined reward function is critical for guiding the agent’s learning process.
Rewards incentivize desired behaviors and penalize undesirable ones, effectively
shaping the agent's exploration of strategies. The design of the reward function
directly impacts the quality and efficiency of the learning process.

3. Selecting a Training Algorithm
Once the environment is ready, a suitable DRL algorithm is chosen to train the
agent. These algorithms, such as policy-based or value-based methods,
determine how the agent updates its policy or value function based on its
interactions with the environment. The choice of algorithm depends on the
problem's complexity, the nature of the environment, and the desired outcomes.

4. Setting Up the Training Process
With the algorithm selected, the training process begins. This involves initializing
the agent with a neural network architecture capable of processing observations
and generating actions. Hyperparameters such as learning rate, discount factor,
and exploration parameters are configured to optimize the learning process.

5. Training the Agent

During training, the agent interacts with the environment across multiple
episodes, each consisting of a sequence of state transitions, actions, and

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 10

rewards. The agent’s policy is updated iteratively, using the feedback received to
improve its decision-making ability. Initially, the agent’s actions are largely
exploratory, but as training progresses, it starts exploiting learned strategies to
achieve better performance.

6. Evaluating and Optimizing the Model

After initial training, the agent’s performance is evaluated against the defined
objectives. This step often reveals areas for improvement, prompting
adjustments to the training setup. Modifications can include fine-tuning
hyperparameters, refining the reward function, or updating the neural network
architecture. The process is repeated iteratively to enhance the agent's
performance.

7. Obtaining the Trained Model

Once the agent consistently performs well in the environment, the training
process concludes, resulting in a trained model. This model encodes the agent’s
optimal policy, enabling it to make decisions and act autonomously within the
environment.

This structured approach ensures that the agent learns effectively and adapts to the
challenges of the virtual environment, culminating in a model that demonstrates
intelligent and autonomous behavior.

Environment and Reward Setup
To enable the AI agent to train effectively in the Cosmic Voyager game, I created a custom
environment tailored to the game's mechanics and training requirements. This
environment was implemented using Python and several key libraries, each serving a
specific purpose in the setup.

Frameworks and Libraries

1. Gymnasium: A framework for creating and interacting with reinforcement
learning environments. It provided the structure for defining action spaces,
observation spaces, and step/reset methods.

2. Selenium: A browser automation tool that enabled direct interaction with the
web-based game. It was used to simulate user actions, retrieve game states, and
control the gameplay dynamically.

3. OpenCV: A library for image processing, used to preprocess the game visuals by

converting screenshots into grayscale and resizing them to fixed dimensions.

4. NumPy: Essential for handling numerical data, particularly for managing
observations and computations within the environment.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 11

5. Collections (Deque): Utilized for stacking frames to provide the agent with
temporal context, critical for understanding dynamic environments.

Custom Environment Setup
The environment was designed to simulate the Cosmic Voyager game and enable the
agent to interact with it autonomously. The game itself runs in a browser, and the
environment uses Selenium to initialize and control the browser session. The game area
is adjusted to a fixed size for consistency, and the agent interacts with the game through
simulated keyboard inputs, corresponding to discrete actions: no action, move left, or
move right.
Observations are generated by capturing screenshots of the game area, preprocessing
them using OpenCV, and normalizing pixel values to create a format suitable for training.
To provide the agent with temporal context, multiple consecutive frames (8) are stacked
together, forming a three-dimensional observation array (example below).

The reward function was designed to encourage survival and penalize collisions. The
agent earns a small reward for each step it survives, with additional incentives for
achieving high scores. Collisions with obstacles result in negative rewards, signaling the
agent to avoid such actions in the future. This reward structure guides the agent in
learning optimal strategies, such as positioning itself effectively to dodge incoming
hazards.
Through this setup, the environment bridges the gap between the web-based game and
the reinforcement learning model, enabling the AI agent to train in a simulated yet highly
interactive virtual setting.

See the following UML class diagram to learn more about the architecture of the script
setting up the custom environment.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 12

Explanation

• Env is the interface or abstract parent class from Gym that CosmicVoyageEnv
implements (i.e., gym.Env in code).

• CosmicVoyageEnv manages game parameters, browser interaction, and
environment logic (resetting, stepping, rendering).

• WebDriver (Selenium’s Chrome driver in this case) is used internally by
CosmicVoyageEnv to load, refresh, and interact with the web game.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 13

The following sequence diagram explains the functionality of the environment script:

1. The RLAgent (reinforcement learning code) creates an instance of
CosmicVoyageEnv, triggering the browser initialization.

2. The agent calls reset(), causing the environment to refresh the game page, click
the “start” button, and build the initial stacked observation from multiple frames.

3. On step(action), the environment focuses the game area, sends the relevant
keyboard action (left, right, or none), takes a screenshot, stacks frames, and
calculates the resulting reward.

4. Finally, close() properly shuts down the browser and cleans up resources.

Training Setup
To train the AI agent for Cosmic Voyager, I carefully designed the training setup to
maximize learning efficiency and ensure the agent's performance steadily improved. This
involved structuring the training process, defining hyperparameters, incorporating

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 14

logging and monitoring tools, and implementing a system for evaluation and continuous
optimization.
The training setup starts by initializing the Cosmic Voyager environment and defining an
evaluation environment identical in configuration. These environments provide the agent
with observations and allow it to interact with the game, learning through trial and error.
A policy is initialized with a neural network architecture tailored to process the game’s
observations effectively.
The training process involves specifying hyperparameters such as learning rate, batch
size, and discount factor, which govern the learning dynamics. The Proximal Policy
Optimization (PPO) algorithm was chosen. PPO is an advanced reinforcement learning
algorithm that optimizes an agent's strategy by balancing exploration and learning
stability. It uses a clipping mechanism to limit policy updates, preventing instability and
ensuring steady improvement. By approximating the policy and value function with a
neural network, PPO efficiently trains agents in complex environments, making it a robust
choice for Cosmic Voyager.
During training, the agent interacts with the environment, observing states, taking
actions, and receiving rewards. A callback system logs metrics, records videos of the
agent's gameplay, and saves model checkpoints at regular intervals. These checkpoints
preserve the model's progress, providing recovery points in case of interruptions.

Logging and Evaluation
Detailed logs are generated during training, capturing performance metrics such as
average episode reward and length, and entropy loss. Visualizations of the agent’s
observations and gameplay videos are recorded for analysis. These insights help
evaluate the agent's progress and identify areas for improvement. Everything is logged to
WandB for streamlined visualization and comparison of different training runs.

Frameworks and Tools

1. PyTorch: A flexible and efficient deep learning framework used for training the
neural network model that powers the AI agent.

2. Stable-Baselines3: A reinforcement learning library providing implementations
of advanced algorithms, including the Proximal Policy Optimization (PPO)
algorithm used in this project.

3. WandB (Weights and Biases): A tool for experiment tracking and logging,

enabling detailed monitoring of the training process.

4. NumPy: Essential for numerical computations throughout the training process.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 15

See the following UML class diagram to learn more about the architecture of the script
executing the deep reinforcement learning.

Explanation

• TrainScript represents the main script that sets up the environment, loads the
model, configures callbacks, and triggers training.

• CosmicVoyageEnv is the custom Gym environment for the web game.
• PPO is the Stable Baselines3 model class used for training.
• BaseCallback is the abstract base class from Stable Baselines3, with various

custom callbacks extending it.
• CallbackList holds and dispatches calls to each callback.
• wandb is used for experiment tracking and logging.

The following sequence diagram explains the functionality of the training script:

1. TrainScript logs into Weights & Biases (wandb) and initializes the project
tracking.

2. It instantiates CosmicVoyageEnv (and a separate evaluation environment), then
loads a pre-trained PPO model.

3. CallbackList is created and populated with various callbacks—
CustomRLCallback, VideoRecorderCallback, ObservationLoggerCallback,
and CheckpointCallback.

4. TrainScript calls model.learn(...), triggering the training loop.
5. During each step, the PPO triggers the CallbackList, which calls each individual

callback in turn, logging metrics and recording artifacts.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 16

6. After the training completes, TrainScript saves the updated model, closes the
environment, and finishes the W&B session.

Optimization and Final Model
Training is an iterative process, where the initial setup is refined based on evaluation
results. Hyperparameters are adjusted, the reward structure may be revisited, and the
neural network architecture can be optimized to improve learning. Once the agent
achieves consistent performance, the training concludes, resulting in a trained model
capable of autonomous gameplay.
By structuring the training setup in this way, I ensured that the agent not only learned the
mechanics of Cosmic Voyager but also optimized its strategies to excel in the dynamic
game environment.

Model Training & Optimization
The training phase for the Cosmic Voyager AI agent involved an iterative process of
experimentation, stabilization, and optimization. My goal was to refine the agent's
learning process by tuning hyperparameters, adjusting the network architecture, and
addressing challenges such as interrupted training sessions. Ultimately, I built on
previous training runs to achieve an agent capable of performing effectively in the
dynamic game environment.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 17

Hyperparameter Tuning
Hyperparameter tuning is a critical step in training reinforcement learning models, as it
directly impacts the efficiency and quality of the learning process. I experimented with
key hyperparameters, including:

• Learning Rate: Controlled how quickly the model updated its weights. I used
smaller values (e.g., 0.00005) for stability and larger values (e.g., 0.001) for faster
updates.

• Batch Size: Determined the number of samples processed in a single update.
Larger batches (e.g., 512) improved stability, while smaller ones (e.g., 64)
allowed faster but noisier updates.

• Clip Range: Regulated the magnitude of policy updates to stabilize learning.
• Entropy Coefficient: Balanced exploration (trying new strategies) and

exploitation (refining known strategies).
• GAE Lambda and Discount Factor (Gamma): Adjusted the agent's sensitivity to

immediate vs. long-term rewards.
• Entropy Coefficient: Adjusted to balance exploration and exploitation.

Although I manually tuned these hyperparameters, AutoML could have streamlined the
process. AutoML (Automated Machine Learning) leverages algorithms to automatically
optimize hyperparameters, architectures, and training strategies, reducing the need for
manual experimentation. Prominent frameworks like Optuna, Ray Tune, and Google
AutoML are designed for this purpose, making them valuable tools for reinforcement
learning projects.

Initial Test Runs and Stabilizing the Training Process
I began with several short test runs to explore different neural network architectures and
hyperparameters. The network complexity was varied by adjusting the number of hidden
layers and nodes per layer, impacting the agent's capacity to learn complex behaviors.
For example, I tested configurations with smaller architectures (e.g., fewer layers and
nodes) for quicker training but less capacity, and larger architectures for potentially
better long-term performance. This experimentation can be observed in the gray, blue
and dark green graphs with the lowest reward and episode length in the plots of the
training metrics below.
Training interruptions caused by PC shutdowns, updates, and errors were a significant
early challenge. To address this, I implemented mechanisms to save trained models at
regular intervals. This allowed me to resume training from the last saved state, avoiding
the need to start from scratch. However, it is important to note that continuing with a
pretrained model constrains certain choices: the training algorithm and network
architecture cannot be changed, as the pretrained model builds on the preexisting
training runs.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 18

CUDA and Training Performance
I conducted the training on my local NVIDIA RTX 3060 GPU with 12GB VRAM using CUDA
(Compute Unified Device Architecture). CUDA is a parallel computing platform
developed by NVIDIA that allows deep learning frameworks to leverage GPU acceleration,
significantly speeding up computations. The RTX 3060 provided sufficient computational
power for the task, enabling smooth training even with larger network architectures and
longer episodes.

Logging and Evaluation
Throughout the training, I logged key metrics:

• Average Episode Length: Indicated how long the agent could survive in the
game.

• Average Reward per Episode: Reflected the agent's overall performance and
progression.

• Entropy Loss: Monitored the balance between exploration and exploitation.

Additionally, I recorded gameplay videos at certain intervals to visually evaluate the
agent's strategies. These visual inspections provided insights into how the agent adapted
to challenges and whether further adjustments were needed. You can download the
training videos right [here] to see how the agent performed at the beginning, in between
and at the end of training.

Long-Term Training and Optimization
Once I stabilized the training process and identified a suitable architecture and
hyperparameters, I initiated a long-term training run lasting nearly 15 days (long light
green graph in the plots below). During this period, I monitored the logged metrics to
ensure consistent progress.
Despite occasional plateaus in performance, iterative adjustments to hyperparameters,
such as reducing the clip range and increasing the entropy coefficient, helped overcome
stagnation and further improved the agent's learning. Earlier improvement attempts
failed, as evidenced by declining metrics in the light blue and green graphs. The final
training run lasted 2.5 days, while building on the model from the previous 15-day run,
culminating in a model capable of navigating the Cosmic Voyager environment
autonomously with a high level of competence.
I successfully optimized the training, resulting in significant performance gains, even
though the training plateaued toward the end, the final turquoise graph with the highest
reward and episode lenght indicates improved stability and performance. This final
model represents the culmination of extensive experimentation, stabilization, and
optimization, achieving the desired performance objectives.

https://github.com/andreas-t-bachmeier/cosmic_voyager/tree/main/TrainingVideos

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 19

Final Model and Output of the Training Process
The training process produced a model zip folder with a size of about 210 mb containing
all the components needed to use and deploy the trained AI agent. Key files include
policy.pth, which holds the trained neural network weights defining the agent’s decision-
making strategy, and policy.optimizer.pth, which stores the optimizer state, enabling
seamless continuation of training. The data file encapsulates the trained parameters and
hyperparameters, effectively preserving the agent’s learning. Supporting files such as
_stable_baselines3_version ensure compatibility by recording the library version used,
while pytorch_variables.pth stores additional metadata from PyTorch. The system_info
file documents the hardware and software specifications of the training environment,
ensuring reproducibility.
This output is comprehensive, enabling further fine-tuning, evaluation, or deployment of
the trained model with minimal setup. You can access the model on Hugging Face right
[here].

See the graphs for the respective runs in the plots for the average reward and episode
length below:

https://huggingface.co/AndiB93/CosmicVoyage_RL

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 20

Graphs for the entropy loss over time for the respective training runs are shown below.
Early on, high entropy indicates broad exploration, and as the model learns, the policy
becomes more deterministic—lowering entropy. Eventually, each curve settles around a
stable level, reflecting a balance between exploration and exploitation.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 21

Implementation of the Inference API as Middleware
The inference API plays a crucial role in the overall architecture by serving as the bridge
between the frontend (web game) and the backend (machine learning model). It handles
requests from the game, processes observations from the virtual environment, and
communicates with the trained ML model to generate actions for the AI agent. The API is
built using modern frameworks and libraries, providing robust and efficient
communication between the components. This inference API ensures efficient and
reliable communication between the game and the ML model, enabling the AI agent to
operate autonomously and adapt to dynamic game environments. By leveraging modern
tools like FastAPI, the implementation achieves high performance and scalability,
essential for real-time decision-making in interactive systems.

Frameworks and Libraries

1. FastAPI: A modern, high-performance web framework for building APIs. It is
used to define the endpoints, handle HTTP requests, and manage the
communication pipeline between the frontend and backend.

2. Stable-Baselines3: Provides the tools to load and interact with the pretrained
Proximal Policy Optimization (PPO) model, which powers the AI agent’s decision-
making.

3. Torch: The PyTorch library facilitates model inference by enabling efficient

processing of neural network predictions.

4. NumPy: Handles numerical operations, such as preprocessing input data into
the correct format for the ML model.

5. Pillow (PIL): Processes image data, resizing and converting input frames to

grayscale for compatibility with the model.

6. Base64: Encodes and decodes image data transmitted as strings between the
frontend and backend.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 22

Functionality of the Inference API
The inference API consists of an endpoint (/predict) that handles requests from the
frontend. The primary function of this endpoint is to accept observations (game states)
as input, preprocess these inputs, feed them into the ML model, and return the predicted
actions to the frontend.
At the core of the API is the Pipeline class, which initializes by loading the pretrained ML
model. This model, saved in PyTorch format, uses the PPO algorithm to make predictions.
The Pipeline class defines a callable interface that takes in observations, preprocesses
them, and returns the model’s predicted actions.

• Preprocessing Observations:
The API receives the game state as a stack of 8 consecutive frames, encoded as
Base64 strings. During preprocessing, the frames are decoded, resized to
100x150 pixels, and converted to grayscale. The pixel values are normalized to
fall between 0 and 1, and the frames are stacked into a single NumPy array with
the required dimensions ((1, 8, 150, 100)), which includes a batch dimension.

• Model Inference:
The preprocessed observation is passed to the pretrained model, which predicts
the optimal action for the current game state. The prediction is deterministic to
ensure consistency, and the resulting action is returned as a JSON response to
the frontend.

• Error Handling:

The API includes robust error handling for scenarios such as invalid or
insufficient input frames. If an issue arises during preprocessing or prediction,
the API responds with an appropriate error message and status code.

• Static File Hosting and CORS Support:

The API also serves static files, enabling seamless integration with the frontend
by hosting the game interface directly. Additionally, a CORS middleware ensures
that the frontend can interact with the API from any domain, simplifying
development and deployment.

API Workflow
The following sequence diagram illustrates the funtionality. The client sends a POST
request with a collection of image frames to an endpoint, which validates and transforms
these inputs into a standardized format before passing them to the loaded ML model.
After the model determines an action, the system sends a concise JSON response back
to the client.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 23

Deployment & Testing
Deployment is a critical phase in delivering machine learning applications to users, and
concepts like DevOps and MLOps are foundational in achieving efficient, reliable, and
scalable deployment processes. DevOps refers to the set of practices that combine
software development (Dev) and IT operations (Ops) to automate and streamline the
processes of building, testing, and deploying applications. It emphasizes continuous
integration and deployment (CI/CD) to ensure consistent and rapid delivery of software.
MLOps, on the other hand, extends these principles to machine learning workflows,
focusing on automating and managing the lifecycle of ML models, from training and
deployment to monitoring and updates. These approaches were partially applied in my
project to ensure smooth deployment and maintenance.

Deployment on Hugging Face Spaces
To make my application publicly accessible, I deployed it on Hugging Face Spaces, a
platform designed for hosting machine learning applications and demos. Hugging Face
Spaces provides an intuitive interface for deploying projects, supporting various
frameworks and seamless integration with Git repositories. By leveraging Docker, I
containerized the application to ensure consistency across environments, streamline
deployment, and simplify scaling.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 24

DevOps principles were applied through the use of containerization and automation.
Containerizing the application with Docker ensured that the deployment environment
was consistent with the development environment, eliminating "it works on my machine"
issues. Additionally, the Dockerfile acted as a single source of truth for the runtime
configuration, making it easy to rebuild and deploy the application in other environments.
From an MLOps perspective, deploying the trained machine learning model as part of the
container ensured that the entire ML pipeline—from model training to deployment—was
reproducible and maintainable. The integration of all components (inference API, static
files, and trained model) into a single container simplified model serving and deployment
and increased performance by reducing latency. This approach aligned with MLOps
practices of ensuring reliability, reproducibility, and traceability in ML workflows.
The deployment process began by uploading the trained model (as a zip file), the
inference script, and the static web game files to the Hugging Face Space. I then
developed a comprehensive Dockerfile to configure the environment required to run the
ML model and application. This Dockerfile automated the setup of system libraries,
Python dependencies, and runtime commands, embodying the DevOps principle of
infrastructure as code.
Further, using a specific base image (python:3.9) and fixed library versions minimizes
bugs due to version mismatches. Containerization allows for easy scalability and
integration into CI/CD pipelines, enabling automated testing and deployment with every
update. The Dockerfile also supports model lifecycle management by integrating the
correct pre-trained model for inference, ensuring straightforward updates or
replacements in the future.

Final Deployment and Accessibility
Once the Dockerfile was executed, Hugging Face Spaces automatically built the
environment within the container. The deployment process provided a seamless path
from development to production, ensuring the application was consistent across all
environments. By hosting the application on Hugging Face Spaces, users can interact
with the AI-powered game via a public URL, engaging with the AI agent directly from their
web browsers without the need for additional installations.

This deployment strategy reflects modern DevOps and MLOps practices:

• FastAPI and Docker streamlined development and deployment.
• Containerization ensured consistency and portability.
• Hugging Face Spaces simplified hosting and integration, embodying the

principles of accessibility and scalability central to MLOps.

By combining the principles of DevOps and MLOps with the technical infrastructure
provided by Hugging Face Spaces and Docker, I achieved a robust and user-friendly

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 25

deployment process. This approach ensures that the application is not only accessible
but also maintainable and ready for future updates or scaling needs.

Testing Approach
In my project, testing focused primarily on debugging and error handling, using printouts
to the command line to identify and address runtime issues. Additionally, I leveraged
Chrome’s developer-specific tools—particularly the Network and Console tabs—to
observe the application’s behavior in real time and diagnose potential issues. While I did
not implement formal unit tests with predefined test cases, I conducted manual testing
for individual components. For the frontend (web game), I manually tested its behavior to
ensure it functioned as desired, verifying user interactions and game logic in isolation.
This corresponds to a unit testing approach, though performed manually rather than
through automated frameworks. Moving to integration testing, I tested the interaction
between the three components—frontend, inference API, and ML model—by initializing
the inference API locally and confirming that the AI mode worked as expected. This
involved verifying that the game correctly sent observations to the API and received
corresponding actions from the ML model. Finally, I performed system testing by
deploying the complete application to the Hugging Face Space and ensuring the entire
system, including all integrated components, worked cohesively in the target
environment. While the testing process was largely manual, this approach ensured each
component and the full application functioned reliably from development to
deployment.

Implementation Effort

Web Game
The development of Cosmic Voyager was an incredibly efficient process, thanks to the
use of generative AI tools like ChatGPT and DALL-E 3. I completed the game design phase,
which included brainstorming mechanics, sketching gameplay flow, and creating visual
elements, in just about 10 hours. These tools made it easy to iterate quickly and refine
ideas, streamlining the entire process. Implementing the game, including coding the
HTML structure, CSS styling, and JavaScript logic, took another 20 hours, resulting in a
compact yet functional codebase of around 850 lines. ChatGPT was instrumental during
this phase, helping me solve challenges like obstacle generation and collision detection,
while I stayed actively involved to ensure I understood and guided the development logic.
Extending the game to support the AI mode added another 10 hours, as I made the
necessary adjustments to integrate the autonomous agent. Fine-tuning the game’s
parameters, like obstacle speed, player responsiveness, and pacing, required several
iterations to achieve a balance between challenge and playability. In total, the
combination of AI-assisted development and focused testing enabled me to create a

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 26

polished and engaging game in just 40 hours, highlighting how effectively generative AI
can enhance the development process.

ML Model
The implementation of the machine learning model for Cosmic Voyager was a substantial
effort that required a great deal of focus and iteration. I relied on OpenAI's GPT-o1 model
as a programming assistant throughout the process, which was incredibly helpful in
tackling challenges and debugging. Setting up the custom environment, with its 350 lines
of code, was particularly demanding. It involved configuring Selenium for browser
interaction and ensuring everything worked as intended, which took about 20 hours.
Creating the training script, another 300 lines of code, required a similar amount of effort
as I worked through debugging and integration issues.
Experimenting with different algorithms, architectures, and hyperparameters during the
initial training runs took approximately 30 hours. This phase involved a lot of trial and error
to refine the process and ensure consistent results. Setting up and executing multiple
training runs, along with fine-tuning the hyperparameters, took an additional 25 hours
before I arrived at the final model.
Developing the inference script, about 100 lines of code, and performing integration
testing took another 15 hours to ensure the API worked seamlessly on my local machine.
Creating the Dockerfile (50 lines of code) for containerization and testing the setup took
about 5 hours. Finally, completing the deployment and making the final adjustments
required around 5 more hours. In total, I spent about 120 hours over several iterative
phases, combining experimentation, debugging, and optimization to successfully
implement the machine learning model for Cosmic Voyager.

Developing Cosmic Voyager as a complete application, from the web game to the
machine learning model, was a challenging yet rewarding experience, spanning about
four weeks of full-time effort. Throughout the process, I relied heavily on generative AI
tools like ChatGPT-o1, which were incredibly helpful. They provided invaluable support
in coding, brainstorming ideas, and solving problems quickly. However, I realized that
these tools couldn’t replace me—they needed my guidance, high-level understanding of
the project, and hands-on involvement to achieve the desired outcomes. There were
times when I had to solve issues myself, ensuring the project stayed on track.
Looking back, I’m impressed by how much I could accomplish with the help of AI tools.
They excelled at reasoning through problems and providing coding solutions, but
ultimately, it was my understanding and decision-making that brought Cosmic Voyager
to life. This project taught me how powerful the combination of human expertise and AI
assistance can be when creating something innovative and impactful.

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 27

Performance Optimization
When testing the AI mode, I observed that the agent's performance was not as strong as
expected. This can be attributed to several factors.
First, the training process of the ML model could be further optimized. While the current
training yielded a functional agent, improvements in the algorithm, architecture, and
hyperparameters might enhance learning. For instance, experimenting with alternative
algorithms, increasing the model's complexity, or extending the training duration could
result in better performance. Leveraging AutoML tools, as previously mentioned, could
streamline this optimization process by automating much of the experimentation and
tuning.
Second, the deployment environment impacts performance. The agent performed
noticeably better on my local machine, where it benefited from the computing power of
my NVIDIA RTX 3060 GPU. On Hugging Face Spaces, I use a free space, which offers only
limited CPU-based resources. This constrained environment may introduce latency
during model inference, slightly delaying the agent's actions. In a fast-paced game like
Cosmic Voyager, even small delays can cause the agent to fail quickly, significantly
affecting its overall performance.
Lastly, generalization issues may also contribute to suboptimal performance. The model
might be overfitted to the specific setup used during training. For example, the game area
changes dynamically for different screen sizes, but the model was trained on a fixed
virtual screen size. To address this, parallel training on environments with varying screen
dimensions and combining the results could improve the model's ability to generalize
across different setups, leading to more robust performance in real-world deployments.
These adjustments, both in training and deployment, hold potential to significantly
enhance the agent's effectiveness in AI mode.

Conclusion
The development of Cosmic Voyager, from design to deployment, was an incredibly
rewarding experience that showcased the immense power of generative AI tools. These
tools were invaluable across every stage of the project—assisting with code generation,
debugging, image creation, framework selection, and providing guidance on
technologies and best practices.
The fact that I could implement such a complex project, spanning web game
development, machine learning, and deployment, entirely on my own and in such a short
time, highlights the paradigm shift brought about by generative AI in software
development. It’s remarkable how these tools enabled me to work effectively without
deep prior implementation knowledge in this domain.
That said, the success of the project also underscores the critical role of human
oversight. I had to guide the AI tools carefully, defining the general solution design and

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 28

approach while steering the development process. My understanding of the overall
architecture and ability to identify and address specific issues—such as library version
conflicts and incompatibilities—were essential in navigating challenges where the AI
tools struggled or got stuck. This reinforces the notion that while AI tools significantly
amplify productivity, they cannot entirely replace human expertise and decision-making
(yet).
Overall, this project was both demanding and immensely fulfilling. It offered an incredibly
steep learning curve, allowing me to delve into new domains and tackle a wide range of
technical challenges. At the same time, it was a lot of fun, as I witnessed the power of
GenAI tools in action, transforming an ambitious idea into a fully functional application.
Watching my agent learn step by step and steadily improve its performance was an
incredibly exciting experience.
This project has demonstrated the evolving role of AI in software development, where
humans and AI collaborate to achieve results that would have seemed daunting not long
ago.

If you’re interested in diving deeper into the code, you can find my GitHub repository for
this project linked [here]. I hope you enjoy playing Cosmic Voyager as much as I enjoyed
creating it!
You can play the deployed game yourself and try to achieve a score above 2000 as well
as try the AI mode right [here].

Thanks and have fun!

Best, Andy

https://github.com/andreas-t-bachmeier/cosmic_voyager
https://huggingface.co/spaces/AndiB93/CosmicVoyage_RL

Andreas T. Bachmeier – From Concept to Deployment: Building a Web App with an AI-Powered Backend 29

Finally, a nice illustration for the project from DALL·E.

	From Concept to Deployment: Building a Web App with an AI-Powered Backend
	Introduction, Motivation & Objective
	Application Design
	Frontend (Web Game)
	Middleware (Inference API)
	Backend (ML Model)

	Implementation of the Web Game as Frontend
	Development of the Machine Learning Model as Backend
	Problem Description and Objective
	Solution
	General Approach to Training an Agent
	Environment and Reward Setup
	Custom Environment Setup
	Training Setup
	Logging and Evaluation
	Optimization and Final Model
	Model Training & Optimization
	Hyperparameter Tuning
	Initial Test Runs and Stabilizing the Training Process
	CUDA and Training Performance
	Logging and Evaluation
	Long-Term Training and Optimization
	Final Model and Output of the Training Process

	Implementation of the Inference API as Middleware
	Functionality of the Inference API
	API Workflow

	Deployment & Testing
	Deployment on Hugging Face Spaces
	Final Deployment and Accessibility
	Testing Approach

	Implementation Effort
	Web Game
	ML Model

	Performance Optimization
	Conclusion

