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From Concept to Deployment: Building a 
Web App with an AI-Powered Backend 

Introduction, Motivation & Objective 
After creating Cosmic Voyager, my retro-inspired web game designed to offer a thrilling 
and accessible gameplay experience, I felt compelled to explore its potential beyond 
traditional player interactions. My next objective was to develop an AI mode, enabling an 
intelligent agent to autonomously play the game. This presented a fascinating challenge: 
building a system that could navigate the game environment, dodge obstacles, and 
maximize its score—all without human intervention. If you want to learn more about the 
development, feel free to read the separate story on that right [here]. See the original web 
interface below. 
 

   
 
To achieve this, I turned to Deep Reinforcement Learning (DRL), a cutting-edge area of 
artificial intelligence known for its ability to train agents to solve complex problems in 
simulated environments. DRL has been successfully applied in various AI agents to 
master virtual games, from classic arcade challenges to modern 3D simulations, making 
it an ideal approach for this project. Not only did this endeavor align with my fascination 

https://andreas-t-bachmeier.github.io/Files/Creation%20of%20Cosmic%20Voyager_AndreasTBachmeier.pdf
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for DRL, but it also provided an opportunity to gain hands-on experience in applying this 
powerful technology to a practical, interactive system. 
The goal was ambitious but exciting: extend Cosmic Voyager into a full-fledged machine 
learning application to showcase the capabilities of reinforcement learning in creating 
intelligent, autonomous systems. This project promised to deepen my understanding of 
AI, enhance my technical skill set, and merge my passion for web development with 
state-of-the-art machine learning techniques.  
In the following, I will discuss the technical details. Have fun! 

Application Design 

 
 
Building upon the foundation of Cosmic Voyager, I transformed the web game into a fully 
functional machine learning application by integrating a deep reinforcement learning 
(DRL) model. The software architecture of Cosmic Voyager is structured around a clear 
modular design comprising three primary components: the frontend, middleware, and 
backend, all deployed within a single Docker container on the Hugging Face Spaces 
platform. 
 

Frontend (Web Game) 
The web game serves as the frontend, developed with HTML, CSS, and JavaScript. It 
operates entirely within the user's browser, rendering the game environment, managing 
user interactions, and visualizing gameplay. Players can access the game through a 
public URL and interact with it via any web browser, ensuring broad accessibility.  
The web game is structured around a single-page application model where HTML, CSS, 
and JavaScript collectively handle rendering, user interaction, and game logic. The core 
JavaScript code listens for user events—like keyboard presses or screen touches—to 
move the on-screen astronaut and uses setInterval loops to manage the continuous flow 
of obstacle generation, collision detection, and score updates. All visual elements (the 
astronaut, dynamically added obstacles, and the score displays) are part of the DOM, 
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which is styled via an external CSS file. When AI mode is activated, the client periodically 
captures the current game state via screenshots of the game area, shrinks and converts 
the canvas to grayscale, and then accumulates these frames in a buffer. Once the buffer 
is filled, the client sends the stacked frames via a JSON POST request to a backend 
endpoint (e.g., “/predict”) for inference. The model in the backend responds with an 
action (move left, move right, or no movement), which the front-end applies to the 
astronaut’s position. This loosely couples the client-side game engine with the server-
side machine learning model. State management, such as current score, high scores, 
and AI toggling, is maintained in JavaScript variables and displayed on-screen in real 
time. The architecture thus allows seamless interplay between manual control and AI-
driven actions, all within a single webpage powered by event-driven JavaScript, interval-
based game loops, and external AI inference calls. 
See the following UML class diagram to learn more about the architecture of the web 
game. 
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Explanation of Components 
 

1. GameController 
Acts as the central “engine” of the game. It controls the main loops (using 
setInterval), handles the score and time increments, checks for collisions, 
spawns obstacles, and coordinates transitions between game states (start, reset, 
game over). 

2. Astronaut 
Encapsulates logic for player movement (or AI-driven movement). In the code, this 
is partly done by calling moveAstronaut() to adjust the astronaut’s position within 
the game area. 

3. Obstacle 
Handles the creation of different obstacle types (asteroids, planets, supernovas, 
black holes), their properties (images, size, position), and updates needed (e.g., 
growth or oscillation). Although in the code these are created on the fly, 
conceptually we can think of them as a class or a responsibility. 

4. UIManager 
Manages user interface concerns such as keyboard activation, touch controls for 
mobile, updating background color, and general display/hide operations. In the 
code, these responsibilities appear scattered across helper functions but can be 
grouped conceptually as UI concerns. 

5. AIAgent 
Handles the AI mode by capturing the game state (with html2canvas), stacking 
frames, sending a request (fetch('/predict')) to the backend, and applying the 
returned action (move left, right, or do nothing). This is the bridge between the 
local JavaScript game and a remote AI inference service. 

6. HTMLDocument 
Represents the DOM elements—buttons, game area, score displays, and so on. 
While not literally a “class” in the code, we can show the DOM or external 
environment in UML to demonstrate the dependencies and references. This 
clarifies that these UI elements are manipulated by the controllers and managers. 

 

Middleware (Inference API) 
The Inference API (application programming interface) functions as the intermediary 
between the frontend and backend. Developed in Python using the FastAPI framework, it 
employs a server that loads a trained deep reinforcement learning model at application 
startup and receives incoming data in the form of multiple image frames. Each frame is 
transformed into a standardized format and appended into a collection of stacked arrays, 
which the model then processes to produce a corresponding action output. The API 
returns the action as a succinct JSON response, incorporating basic validation to ensure 
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correct data input. In addition, it serves static content from a designated directory and 
uses appropriate middleware to manage cross-origin requests, making it suitable for 
seamless integration into real-time interactive systems. 
See the following UML class diagram to learn more about the architecture of the 
Inference API. 
 

 
 
Explanation of Components 
 

1. InferenceAPI (the FastAPI-based application) defines the /predict endpoint, which 
calls the Pipeline instance. 

2. Pipeline loads a pre-trained PPOModel (DRL model) and uses it for inference once 
it has preprocessed the incoming frames. 

3. ObservationInput is a data model used for validating the request body. 

Backend (ML Model) 
The ML/DRL model constitutes the backend, providing the AI agent's decision-making 
capabilities. Trained using DRL algorithms and OpenAI’s Gymnasium framework, the 
model evaluates the current game state and determines optimal actions to navigate the 
game's challenges. This integration enables the AI agent to play the game autonomously, 
showcasing the practical application of reinforcement learning in interactive 
environments. 
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Implementation of the Web Game as Frontend 
When I developed Cosmic Voyager, my goal was to create an engaging and accessible 
gaming experience that could not only serve as a platform for honing my web 
development skills but also provide a foundation for building a machine learning 
application. I wanted the game to evoke nostalgia with its retro-inspired 2D design while 
ensuring it was easily accessible across devices. 
The gameplay centers around an astronaut navigating through an obstacle-filled space 
environment. I designed the controls to be intuitive, allowing players to use a keyboard or 
touch inputs to guide the astronaut past asteroids, planets, and other cosmic hazards. 
To keep the game dynamic and challenging, I incorporated features like increasing 
obstacle complexity and randomized patterns, ensuring that no two play sessions felt the 
same. I added a scoring system to motivate players, along with visual elements like 
background changes to enhance the sense of progression.  
 
I built the game using HTML, CSS, and JavaScript. HTML provided the structure, CSS 
handled the styling, and JavaScript brought the game to life with logic for obstacle 
generation, collision detection, and adaptive controls. For the visual assets, I used DALL-
E to create the icons and backgrounds, then optimized them to maintain a cohesive and 
polished cosmic theme. 
One of the biggest challenges I faced was ensuring the game worked seamlessly across 
various devices. I had to make careful adjustments to the layout and controls to create a 
truly responsive design. Another challenge was balancing the game’s difficulty. Through 
iterative testing, I fine-tuned the obstacle speed and frequency to strike the perfect 
balance between being fair and challenging. 
The final product was a functional, visually appealing, and universally accessible game. 
It not only demonstrated the potential of combining creativity with modern development 
tools but also laid the groundwork for integrating a machine learning agent. Cosmic 
Voyager became more than just a game — it became a platform for exploring the exciting 
intersection of web development and artificial intelligence. 
To enable the integration of AI mode into my web game, I made several enhancements to 
the frontend. One of the key changes I introduced was a new button that allows users to 
activate AI mode directly from the interface. This addition made it possible to switch 
seamlessly between manual and AI gameplay modes, providing a flexible and intuitive 
experience. I also added a separate high-score display specifically for the AI agent, 
ensuring that its performance was tracked independently from the player's score. This 
not only highlighted the AI's capabilities but also gave me a clear way to measure its 
success. See the updated web interface below. 
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I extended the game logic in the frontend to handle the functionality required for the AI 
mode. I implemented a process to capture the current game state and send it to the 
backend via an API, where the AI model would decide on the best action to take. These 
decisions were then applied in real-time, enabling the AI agent to autonomously navigate 
the game and strive for high scores. I adapted the reset and start mechanisms to ensure 
they worked smoothly across both manual and AI modes, making the transition between 
them seamless for users. 
Through these adaptations, I transformed the game into a dual-mode system that 
supports both interactive and automated gameplay. This evolution not only improved the 
frontend but also turned the game into a platform where I could explore reinforcement 
learning in action, while comparing human and AI performance in a fun and engaging way. 
 
The following sequence diagram shows the cyclical nature of AI inference: capturing 
frames from the DOM, batching them, sending them to the server, receiving an action, 
and finally applying that action in the GameController. 
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Development of the Machine Learning Model as Backend 

Problem Description and Objective 
Training an AI agent to navigate the Cosmic Voyager environment posed an exciting 
challenge. The objective was to create a system that could play the game autonomously, 
continuously improving its performance over time. The agent needed to learn the 
underlying mechanics of the game, such as avoiding obstacles and positioning itself 
effectively within the game area. This required it to develop strategies that maximize 
survival and optimize its score. 
The problem was defined by the dynamic nature of the environment. The agent faced a 
barrage of obstacles, increasing in complexity and frequency as the game progressed. To 
succeed, it had to make quick decisions in real-time, leveraging the information from its 
surroundings to predict the best course of action. The ultimate goal was for the agent to 
learn these mechanics and strategies on its own through continuous interaction with the 
game, gradually getting better with each iteration and hence maximising the score. 
 

Solution  
To solve the problem of training an AI agent to master Cosmic Voyager, I turned to Deep 
Reinforcement Learning (DRL), a cutting-edge approach that has been widely used for 
training agents in virtual game environments. DRL combines reinforcement learning (RL) 
with deep neural networks to enable agents to learn complex tasks by interacting with an 
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environment. In this paradigm, an agent observes the environment's state, selects an 
action, and receives feedback in the form of a reward. This feedback guides the agent in 
learning to take better actions over time. The goal is for the agent to maximize cumulative 
rewards, which represent successful behavior in the environment. 
In DRL, a neural network approximates either the agent’s policy (a strategy mapping 
states to actions) or the value function (estimating future rewards from a state). Unlike 
traditional supervised learning, where the model learns from labeled data, DRL operates 
through trial and error. The agent explores the environment, experimenting with actions 
to discover strategies that yield the highest rewards. Over many iterations, the agent 
converges toward optimal behavior by balancing exploration of new strategies and 
exploitation of known successful ones. 
This approach has been highly effective in applications such as robotics, video games, 
and autonomous systems, where agents operate in dynamic environments requiring real-
time decision-making and adaptation. 

General Approach to Training an Agent 
1. Defining the Virtual Environment 

The first step is to create a virtual environment that serves as the training ground 
for the agent. This environment must provide observations representing its state, 
accept actions from the agent, and compute rewards based on the agent’s 
performance. The environment encapsulates the rules, dynamics, and 
objectives the agent must learn to navigate. 
 

2. Designing the Reward Function 
A well-defined reward function is critical for guiding the agent’s learning process. 
Rewards incentivize desired behaviors and penalize undesirable ones, effectively 
shaping the agent's exploration of strategies. The design of the reward function 
directly impacts the quality and efficiency of the learning process. 
 

3. Selecting a Training Algorithm 
Once the environment is ready, a suitable DRL algorithm is chosen to train the 
agent. These algorithms, such as policy-based or value-based methods, 
determine how the agent updates its policy or value function based on its 
interactions with the environment. The choice of algorithm depends on the 
problem's complexity, the nature of the environment, and the desired outcomes. 
 

4. Setting Up the Training Process 
With the algorithm selected, the training process begins. This involves initializing 
the agent with a neural network architecture capable of processing observations 
and generating actions. Hyperparameters such as learning rate, discount factor, 
and exploration parameters are configured to optimize the learning process. 

 
5. Training the Agent 

During training, the agent interacts with the environment across multiple 
episodes, each consisting of a sequence of state transitions, actions, and 
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rewards. The agent’s policy is updated iteratively, using the feedback received to 
improve its decision-making ability. Initially, the agent’s actions are largely 
exploratory, but as training progresses, it starts exploiting learned strategies to 
achieve better performance. 

 
6. Evaluating and Optimizing the Model 

After initial training, the agent’s performance is evaluated against the defined 
objectives. This step often reveals areas for improvement, prompting 
adjustments to the training setup. Modifications can include fine-tuning 
hyperparameters, refining the reward function, or updating the neural network 
architecture. The process is repeated iteratively to enhance the agent's 
performance. 

 
7. Obtaining the Trained Model 

Once the agent consistently performs well in the environment, the training 
process concludes, resulting in a trained model. This model encodes the agent’s 
optimal policy, enabling it to make decisions and act autonomously within the 
environment. 
 

This structured approach ensures that the agent learns effectively and adapts to the 
challenges of the virtual environment, culminating in a model that demonstrates 
intelligent and autonomous behavior. 
 

Environment and Reward Setup 
To enable the AI agent to train effectively in the Cosmic Voyager game, I created a custom 
environment tailored to the game's mechanics and training requirements. This 
environment was implemented using Python and several key libraries, each serving a 
specific purpose in the setup. 
 

Frameworks and Libraries 
 

1. Gymnasium: A framework for creating and interacting with reinforcement 
learning environments. It provided the structure for defining action spaces, 
observation spaces, and step/reset methods. 
 

2. Selenium: A browser automation tool that enabled direct interaction with the 
web-based game. It was used to simulate user actions, retrieve game states, and 
control the gameplay dynamically. 

 
3. OpenCV: A library for image processing, used to preprocess the game visuals by 

converting screenshots into grayscale and resizing them to fixed dimensions. 
 

4. NumPy: Essential for handling numerical data, particularly for managing 
observations and computations within the environment. 
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5. Collections (Deque): Utilized for stacking frames to provide the agent with 
temporal context, critical for understanding dynamic environments. 
 

Custom Environment Setup 
The environment was designed to simulate the Cosmic Voyager game and enable the 
agent to interact with it autonomously. The game itself runs in a browser, and the 
environment uses Selenium to initialize and control the browser session. The game area 
is adjusted to a fixed size for consistency, and the agent interacts with the game through 
simulated keyboard inputs, corresponding to discrete actions: no action, move left, or 
move right. 
Observations are generated by capturing screenshots of the game area, preprocessing 
them using OpenCV, and normalizing pixel values to create a format suitable for training. 
To provide the agent with temporal context, multiple consecutive frames (8) are stacked 
together, forming a three-dimensional observation array (example below). 
 

 
 
The reward function was designed to encourage survival and penalize collisions. The 
agent earns a small reward for each step it survives, with additional incentives for 
achieving high scores. Collisions with obstacles result in negative rewards, signaling the 
agent to avoid such actions in the future. This reward structure guides the agent in 
learning optimal strategies, such as positioning itself effectively to dodge incoming 
hazards. 
Through this setup, the environment bridges the gap between the web-based game and 
the reinforcement learning model, enabling the AI agent to train in a simulated yet highly 
interactive virtual setting. 
 
See the following UML class diagram to learn more about the architecture of the script 
setting up the custom environment. 
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Explanation 
 

• Env is the interface or abstract parent class from Gym that CosmicVoyageEnv 
implements (i.e., gym.Env in code). 

• CosmicVoyageEnv manages game parameters, browser interaction, and 
environment logic (resetting, stepping, rendering). 

• WebDriver (Selenium’s Chrome driver in this case) is used internally by 
CosmicVoyageEnv to load, refresh, and interact with the web game. 
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The following sequence diagram explains the functionality of the environment script: 
 

1. The RLAgent (reinforcement learning code) creates an instance of 
CosmicVoyageEnv, triggering the browser initialization. 

2. The agent calls reset(), causing the environment to refresh the game page, click 
the “start” button, and build the initial stacked observation from multiple frames. 

3. On step(action), the environment focuses the game area, sends the relevant 
keyboard action (left, right, or none), takes a screenshot, stacks frames, and 
calculates the resulting reward. 

4. Finally, close() properly shuts down the browser and cleans up resources. 
 

 
 

Training Setup 
To train the AI agent for Cosmic Voyager, I carefully designed the training setup to 
maximize learning efficiency and ensure the agent's performance steadily improved. This 
involved structuring the training process, defining hyperparameters, incorporating 
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logging and monitoring tools, and implementing a system for evaluation and continuous 
optimization. 
The training setup starts by initializing the Cosmic Voyager environment and defining an 
evaluation environment identical in configuration. These environments provide the agent 
with observations and allow it to interact with the game, learning through trial and error. 
A policy is initialized with a neural network architecture tailored to process the game’s 
observations effectively. 
The training process involves specifying hyperparameters such as learning rate, batch 
size, and discount factor, which govern the learning dynamics. The Proximal Policy 
Optimization (PPO)  algorithm was chosen. PPO is an advanced reinforcement learning 
algorithm that optimizes an agent's strategy by balancing exploration and learning 
stability. It uses a clipping mechanism to limit policy updates, preventing instability and 
ensuring steady improvement. By approximating the policy and value function with a 
neural network, PPO efficiently trains agents in complex environments, making it a robust 
choice for Cosmic Voyager. 
During training, the agent interacts with the environment, observing states, taking 
actions, and receiving rewards. A callback system logs metrics, records videos of the 
agent's gameplay, and saves model checkpoints at regular intervals. These checkpoints 
preserve the model's progress, providing recovery points in case of interruptions. 
 

Logging and Evaluation 
Detailed logs are generated during training, capturing performance metrics such as 
average episode reward and length, and entropy loss. Visualizations of the agent’s 
observations and gameplay videos are recorded for analysis. These insights help 
evaluate the agent's progress and identify areas for improvement. Everything is logged to 
WandB for streamlined visualization and comparison of different training runs. 
 
Frameworks and Tools 
 

1. PyTorch: A flexible and efficient deep learning framework used for training the 
neural network model that powers the AI agent. 
 

2. Stable-Baselines3: A reinforcement learning library providing implementations 
of advanced algorithms, including the Proximal Policy Optimization (PPO) 
algorithm used in this project. 

 
3. WandB (Weights and Biases): A tool for experiment tracking and logging, 

enabling detailed monitoring of the training process. 
 

4. NumPy: Essential for numerical computations throughout the training process. 
 



Andreas T. Bachmeier   –  From Concept to Deployment: Building a Web App with an AI-Powered Backend 15 

See the following UML class diagram to learn more about the architecture of the script 
executing the deep reinforcement learning. 
 

 
Explanation 
 

• TrainScript represents the main script that sets up the environment, loads the 
model, configures callbacks, and triggers training. 

• CosmicVoyageEnv is the custom Gym environment for the web game. 
• PPO is the Stable Baselines3 model class used for training. 
• BaseCallback is the abstract base class from Stable Baselines3, with various 

custom callbacks extending it. 
• CallbackList holds and dispatches calls to each callback. 
• wandb is used for experiment tracking and logging. 

 
The following sequence diagram explains the functionality of the training script: 
 

1. TrainScript logs into Weights & Biases (wandb) and initializes the project 
tracking. 

2. It instantiates CosmicVoyageEnv (and a separate evaluation environment), then 
loads a pre-trained PPO model. 

3. CallbackList is created and populated with various callbacks—
CustomRLCallback, VideoRecorderCallback, ObservationLoggerCallback, 
and CheckpointCallback. 

4. TrainScript calls model.learn(...), triggering the training loop. 
5. During each step, the PPO triggers the CallbackList, which calls each individual 

callback in turn, logging metrics and recording artifacts. 
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6. After the training completes, TrainScript saves the updated model, closes the 
environment, and finishes the W&B session. 

 

 
 

Optimization and Final Model 
Training is an iterative process, where the initial setup is refined based on evaluation 
results. Hyperparameters are adjusted, the reward structure may be revisited, and the 
neural network architecture can be optimized to improve learning. Once the agent 
achieves consistent performance, the training concludes, resulting in a trained model 
capable of autonomous gameplay. 
By structuring the training setup in this way, I ensured that the agent not only learned the 
mechanics of Cosmic Voyager but also optimized its strategies to excel in the dynamic 
game environment. 
 

Model Training & Optimization 
The training phase for the Cosmic Voyager AI agent involved an iterative process of 
experimentation, stabilization, and optimization. My goal was to refine the agent's 
learning process by tuning hyperparameters, adjusting the network architecture, and 
addressing challenges such as interrupted training sessions. Ultimately, I built on 
previous training runs to achieve an agent capable of performing effectively in the 
dynamic game environment. 
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Hyperparameter Tuning 
Hyperparameter tuning is a critical step in training reinforcement learning models, as it 
directly impacts the efficiency and quality of the learning process. I experimented with 
key hyperparameters, including: 
 

• Learning Rate: Controlled how quickly the model updated its weights. I used 
smaller values (e.g., 0.00005) for stability and larger values (e.g., 0.001) for faster 
updates. 

• Batch Size: Determined the number of samples processed in a single update. 
Larger batches (e.g., 512) improved stability, while smaller ones (e.g., 64) 
allowed faster but noisier updates. 

• Clip Range: Regulated the magnitude of policy updates to stabilize learning. 
• Entropy Coefficient: Balanced exploration (trying new strategies) and 

exploitation (refining known strategies). 
• GAE Lambda and Discount Factor (Gamma): Adjusted the agent's sensitivity to 

immediate vs. long-term rewards. 
• Entropy Coefficient: Adjusted to balance exploration and exploitation. 

 
Although I manually tuned these hyperparameters, AutoML could have streamlined the 
process. AutoML (Automated Machine Learning) leverages algorithms to automatically 
optimize hyperparameters, architectures, and training strategies, reducing the need for 
manual experimentation. Prominent frameworks like Optuna, Ray Tune, and Google 
AutoML are designed for this purpose, making them valuable tools for reinforcement 
learning projects. 
 

Initial Test Runs and Stabilizing the Training Process 
I began with several short test runs to explore different neural network architectures and 
hyperparameters. The network complexity was varied by adjusting the number of hidden 
layers and nodes per layer, impacting the agent's capacity to learn complex behaviors. 
For example, I tested configurations with smaller architectures (e.g., fewer layers and 
nodes) for quicker training but less capacity, and larger architectures for potentially 
better long-term performance. This experimentation can be observed in the gray, blue 
and dark green graphs with the lowest reward and episode length in the plots of the 
training metrics below. 
Training interruptions caused by PC shutdowns, updates, and errors were a significant 
early challenge. To address this, I implemented mechanisms to save trained models at 
regular intervals. This allowed me to resume training from the last saved state, avoiding 
the need to start from scratch. However, it is important to note that continuing with a 
pretrained model constrains certain choices: the training algorithm and network 
architecture cannot be changed, as the pretrained model builds on the preexisting 
training runs. 
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CUDA and Training Performance 
I conducted the training on my local NVIDIA RTX 3060 GPU with 12GB VRAM using CUDA 
(Compute Unified Device Architecture). CUDA is a parallel computing platform 
developed by NVIDIA that allows deep learning frameworks to leverage GPU acceleration, 
significantly speeding up computations. The RTX 3060 provided sufficient computational 
power for the task, enabling smooth training even with larger network architectures and 
longer episodes. 
 

Logging and Evaluation 
Throughout the training, I logged key metrics: 
 

• Average Episode Length: Indicated how long the agent could survive in the 
game. 

• Average Reward per Episode: Reflected the agent's overall performance and 
progression. 

• Entropy Loss: Monitored the balance between exploration and exploitation. 
 

Additionally, I recorded gameplay videos at certain intervals to visually evaluate the 
agent's strategies. These visual inspections provided insights into how the agent adapted 
to challenges and whether further adjustments were needed. You can download the 
training videos right [here] to see how the agent performed at the beginning, in between 
and at the end of training. 
 

Long-Term Training and Optimization 
Once I stabilized the training process and identified a suitable architecture and 
hyperparameters, I initiated a long-term training run lasting nearly 15 days (long light 
green graph in the plots below). During this period, I monitored the logged metrics to 
ensure consistent progress.  
Despite occasional plateaus in performance, iterative adjustments to hyperparameters, 
such as reducing the clip range and increasing the entropy coefficient, helped overcome 
stagnation and further improved the agent's learning. Earlier improvement attempts 
failed, as evidenced by declining metrics in the light blue and green graphs. The final 
training run lasted 2.5 days, while building on the model from the previous 15-day run, 
culminating in a model capable of navigating the Cosmic Voyager environment 
autonomously with a high level of competence.  
I successfully optimized the training, resulting in significant performance gains, even 
though the training plateaued toward the end, the final turquoise graph with the highest 
reward and episode lenght indicates improved stability and performance. This final 
model represents the culmination of extensive experimentation, stabilization, and 
optimization, achieving the desired performance objectives. 
 

https://github.com/andreas-t-bachmeier/cosmic_voyager/tree/main/TrainingVideos
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Final Model and Output of the Training Process 
The training process produced a model zip folder with a size of about 210 mb containing 
all the components needed to use and deploy the trained AI agent. Key files include 
policy.pth, which holds the trained neural network weights defining the agent’s decision-
making strategy, and policy.optimizer.pth, which stores the optimizer state, enabling 
seamless continuation of training. The data file encapsulates the trained parameters and 
hyperparameters, effectively preserving the agent’s learning. Supporting files such as 
_stable_baselines3_version ensure compatibility by recording the library version used, 
while pytorch_variables.pth stores additional metadata from PyTorch. The system_info 
file documents the hardware and software specifications of the training environment, 
ensuring reproducibility. 
This output is comprehensive, enabling further fine-tuning, evaluation, or deployment of 
the trained model with minimal setup. You can access the model on Hugging Face right 
[here].  
 
See the graphs for the respective runs in the plots for the average reward and episode 
length below:  

 
 
 

https://huggingface.co/AndiB93/CosmicVoyage_RL
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Graphs for the entropy loss over time for the respective training runs are shown below. 
Early on, high entropy indicates broad exploration, and as the model learns, the policy 
becomes more deterministic—lowering entropy. Eventually, each curve settles around a 
stable level, reflecting a balance between exploration and exploitation. 
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Implementation of the Inference API as Middleware 
The inference API plays a crucial role in the overall architecture by serving as the bridge 
between the frontend (web game) and the backend (machine learning model). It handles 
requests from the game, processes observations from the virtual environment, and 
communicates with the trained ML model to generate actions for the AI agent. The API is 
built using modern frameworks and libraries, providing robust and efficient 
communication between the components. This inference API ensures efficient and 
reliable communication between the game and the ML model, enabling the AI agent to 
operate autonomously and adapt to dynamic game environments. By leveraging modern 
tools like FastAPI, the implementation achieves high performance and scalability, 
essential for real-time decision-making in interactive systems. 
 
Frameworks and Libraries 
 

1. FastAPI: A modern, high-performance web framework for building APIs. It is 
used to define the endpoints, handle HTTP requests, and manage the 
communication pipeline between the frontend and backend. 
 

2. Stable-Baselines3: Provides the tools to load and interact with the pretrained 
Proximal Policy Optimization (PPO) model, which powers the AI agent’s decision-
making. 

 
3. Torch: The PyTorch library facilitates model inference by enabling efficient 

processing of neural network predictions. 
 

4. NumPy: Handles numerical operations, such as preprocessing input data into 
the correct format for the ML model. 

 
5. Pillow (PIL): Processes image data, resizing and converting input frames to 

grayscale for compatibility with the model. 
 

6. Base64: Encodes and decodes image data transmitted as strings between the 
frontend and backend. 
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Functionality of the Inference API 
The inference API consists of an endpoint (/predict) that handles requests from the 
frontend. The primary function of this endpoint is to accept observations (game states) 
as input, preprocess these inputs, feed them into the ML model, and return the predicted 
actions to the frontend. 
At the core of the API is the Pipeline class, which initializes by loading the pretrained ML 
model. This model, saved in PyTorch format, uses the PPO algorithm to make predictions. 
The Pipeline class defines a callable interface that takes in observations, preprocesses 
them, and returns the model’s predicted actions. 
 

• Preprocessing Observations: 
The API receives the game state as a stack of 8 consecutive frames, encoded as 
Base64 strings. During preprocessing, the frames are decoded, resized to 
100x150 pixels, and converted to grayscale. The pixel values are normalized to 
fall between 0 and 1, and the frames are stacked into a single NumPy array with 
the required dimensions ((1, 8, 150, 100)), which includes a batch dimension. 
 

• Model Inference: 
The preprocessed observation is passed to the pretrained model, which predicts 
the optimal action for the current game state. The prediction is deterministic to 
ensure consistency, and the resulting action is returned as a JSON response to 
the frontend. 

 
• Error Handling: 

The API includes robust error handling for scenarios such as invalid or 
insufficient input frames. If an issue arises during preprocessing or prediction, 
the API responds with an appropriate error message and status code. 

 
• Static File Hosting and CORS Support: 

The API also serves static files, enabling seamless integration with the frontend 
by hosting the game interface directly. Additionally, a CORS middleware ensures 
that the frontend can interact with the API from any domain, simplifying 
development and deployment. 

 

API Workflow 
The following sequence diagram illustrates the funtionality. The client sends a POST 
request with a collection of image frames to an endpoint, which validates and transforms 
these inputs into a standardized format before passing them to the loaded ML model. 
After the model determines an action, the system sends a concise JSON response back 
to the client. 
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Deployment & Testing 
Deployment is a critical phase in delivering machine learning applications to users, and 
concepts like DevOps and MLOps are foundational in achieving efficient, reliable, and 
scalable deployment processes. DevOps refers to the set of practices that combine 
software development (Dev) and IT operations (Ops) to automate and streamline the 
processes of building, testing, and deploying applications. It emphasizes continuous 
integration and deployment (CI/CD) to ensure consistent and rapid delivery of software. 
MLOps, on the other hand, extends these principles to machine learning workflows, 
focusing on automating and managing the lifecycle of ML models, from training and 
deployment to monitoring and updates. These approaches were partially applied in my 
project to ensure smooth deployment and maintenance. 
 

Deployment on Hugging Face Spaces 
To make my application publicly accessible, I deployed it on Hugging Face Spaces, a 
platform designed for hosting machine learning applications and demos. Hugging Face 
Spaces provides an intuitive interface for deploying projects, supporting various 
frameworks and seamless integration with Git repositories. By leveraging Docker, I 
containerized the application to ensure consistency across environments, streamline 
deployment, and simplify scaling. 
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DevOps principles were applied through the use of containerization and automation. 
Containerizing the application with Docker ensured that the deployment environment 
was consistent with the development environment, eliminating "it works on my machine" 
issues. Additionally, the Dockerfile acted as a single source of truth for the runtime 
configuration, making it easy to rebuild and deploy the application in other environments. 
From an MLOps perspective, deploying the trained machine learning model as part of the 
container ensured that the entire ML pipeline—from model training to deployment—was 
reproducible and maintainable. The integration of all components (inference API, static 
files, and trained model) into a single container simplified model serving and deployment 
and increased performance by reducing latency. This approach aligned with MLOps 
practices of ensuring reliability, reproducibility, and traceability in ML workflows. 
The deployment process began by uploading the trained model (as a zip file), the 
inference script, and the static web game files to the Hugging Face Space. I then 
developed a comprehensive Dockerfile to configure the environment required to run the 
ML model and application. This Dockerfile automated the setup of system libraries, 
Python dependencies, and runtime commands, embodying the DevOps principle of 
infrastructure as code. 
Further, using a specific base image (python:3.9) and fixed library versions minimizes 
bugs due to version mismatches. Containerization allows for easy scalability and 
integration into CI/CD pipelines, enabling automated testing and deployment with every 
update. The Dockerfile also supports model lifecycle management by integrating the 
correct pre-trained model for inference, ensuring straightforward updates or 
replacements in the future. 
 

Final Deployment and Accessibility 
Once the Dockerfile was executed, Hugging Face Spaces automatically built the 
environment within the container. The deployment process provided a seamless path 
from development to production, ensuring the application was consistent across all 
environments. By hosting the application on Hugging Face Spaces, users can interact 
with the AI-powered game via a public URL, engaging with the AI agent directly from their 
web browsers without the need for additional installations. 
 
This deployment strategy reflects modern DevOps and MLOps practices: 
 

• FastAPI and Docker streamlined development and deployment. 
• Containerization ensured consistency and portability. 
• Hugging Face Spaces simplified hosting and integration, embodying the 

principles of accessibility and scalability central to MLOps. 
 
By combining the principles of DevOps and MLOps with the technical infrastructure 
provided by Hugging Face Spaces and Docker, I achieved a robust and user-friendly 
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deployment process. This approach ensures that the application is not only accessible 
but also maintainable and ready for future updates or scaling needs. 
 

Testing Approach 
In my project, testing focused primarily on debugging and error handling, using printouts 
to the command line to identify and address runtime issues. Additionally, I leveraged 
Chrome’s developer-specific tools—particularly the Network and Console tabs—to 
observe the application’s behavior in real time and diagnose potential issues. While I did 
not implement formal unit tests with predefined test cases, I conducted manual testing 
for individual components. For the frontend (web game), I manually tested its behavior to 
ensure it functioned as desired, verifying user interactions and game logic in isolation. 
This corresponds to a unit testing approach, though performed manually rather than 
through automated frameworks. Moving to integration testing, I tested the interaction 
between the three components—frontend, inference API, and ML model—by initializing 
the inference API locally and confirming that the AI mode worked as expected. This 
involved verifying that the game correctly sent observations to the API and received 
corresponding actions from the ML model. Finally, I performed system testing by 
deploying the complete application to the Hugging Face Space and ensuring the entire 
system, including all integrated components, worked cohesively in the target 
environment. While the testing process was largely manual, this approach ensured each 
component and the full application functioned reliably from development to 
deployment. 

Implementation Effort 

Web Game 
The development of Cosmic Voyager was an incredibly efficient process, thanks to the 
use of generative AI tools like ChatGPT and DALL-E 3. I completed the game design phase, 
which included brainstorming mechanics, sketching gameplay flow, and creating visual 
elements, in just about 10 hours. These tools made it easy to iterate quickly and refine 
ideas, streamlining the entire process. Implementing the game, including coding the 
HTML structure, CSS styling, and JavaScript logic, took another 20 hours, resulting in a 
compact yet functional codebase of around 850 lines. ChatGPT was instrumental during 
this phase, helping me solve challenges like obstacle generation and collision detection, 
while I stayed actively involved to ensure I understood and guided the development logic. 
Extending the game to support the AI mode added another 10 hours, as I made the 
necessary adjustments to integrate the autonomous agent. Fine-tuning the game’s 
parameters, like obstacle speed, player responsiveness, and pacing, required several 
iterations to achieve a balance between challenge and playability. In total, the 
combination of AI-assisted development and focused testing enabled me to create a 
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polished and engaging game in just 40 hours, highlighting how effectively generative AI 
can enhance the development process. 
 

ML Model 
The implementation of the machine learning model for Cosmic Voyager was a substantial 
effort that required a great deal of focus and iteration. I relied on OpenAI's GPT-o1 model 
as a programming assistant throughout the process, which was incredibly helpful in 
tackling challenges and debugging. Setting up the custom environment, with its 350 lines 
of code, was particularly demanding. It involved configuring Selenium for browser 
interaction and ensuring everything worked as intended, which took about 20 hours. 
Creating the training script, another 300 lines of code, required a similar amount of effort 
as I worked through debugging and integration issues. 
Experimenting with different algorithms, architectures, and hyperparameters during the 
initial training runs took approximately 30 hours. This phase involved a lot of trial and error 
to refine the process and ensure consistent results. Setting up and executing multiple 
training runs, along with fine-tuning the hyperparameters, took an additional 25 hours 
before I arrived at the final model. 
Developing the inference script, about 100 lines of code, and performing integration 
testing took another 15 hours to ensure the API worked seamlessly on my local machine. 
Creating the Dockerfile (50 lines of code) for containerization and testing the setup took 
about 5 hours. Finally, completing the deployment and making the final adjustments 
required around 5 more hours. In total, I spent about 120 hours over several iterative 
phases, combining experimentation, debugging, and optimization to successfully 
implement the machine learning model for Cosmic Voyager. 
 
Developing Cosmic Voyager as a complete application, from the web game to the 
machine learning model, was a challenging yet rewarding experience, spanning about 
four weeks of full-time effort. Throughout the process, I relied heavily on generative AI 
tools like ChatGPT-o1, which were incredibly helpful. They provided invaluable support 
in coding, brainstorming ideas, and solving problems quickly. However, I realized that 
these tools couldn’t replace me—they needed my guidance, high-level understanding of 
the project, and hands-on involvement to achieve the desired outcomes. There were 
times when I had to solve issues myself, ensuring the project stayed on track. 
Looking back, I’m impressed by how much I could accomplish with the help of AI tools. 
They excelled at reasoning through problems and providing coding solutions, but 
ultimately, it was my understanding and decision-making that brought Cosmic Voyager 
to life. This project taught me how powerful the combination of human expertise and AI 
assistance can be when creating something innovative and impactful. 
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Performance Optimization 
When testing the AI mode, I observed that the agent's performance was not as strong as 
expected. This can be attributed to several factors.  
First, the training process of the ML model could be further optimized. While the current 
training yielded a functional agent, improvements in the algorithm, architecture, and 
hyperparameters might enhance learning. For instance, experimenting with alternative 
algorithms, increasing the model's complexity, or extending the training duration could 
result in better performance. Leveraging AutoML tools, as previously mentioned, could 
streamline this optimization process by automating much of the experimentation and 
tuning. 
Second, the deployment environment impacts performance. The agent performed 
noticeably better on my local machine, where it benefited from the computing power of 
my NVIDIA RTX 3060 GPU. On Hugging Face Spaces, I use a free space, which offers only 
limited CPU-based resources. This constrained environment may introduce latency 
during model inference, slightly delaying the agent's actions. In a fast-paced game like 
Cosmic Voyager, even small delays can cause the agent to fail quickly, significantly 
affecting its overall performance. 
Lastly, generalization issues may also contribute to suboptimal performance. The model 
might be overfitted to the specific setup used during training. For example, the game area 
changes dynamically for different screen sizes, but the model was trained on a fixed 
virtual screen size. To address this, parallel training on environments with varying screen 
dimensions and combining the results could improve the model's ability to generalize 
across different setups, leading to more robust performance in real-world deployments. 
These adjustments, both in training and deployment, hold potential to significantly 
enhance the agent's effectiveness in AI mode. 

Conclusion 
The development of Cosmic Voyager, from design to deployment, was an incredibly 
rewarding experience that showcased the immense power of generative AI tools. These 
tools were invaluable across every stage of the project—assisting with code generation, 
debugging, image creation, framework selection, and providing guidance on 
technologies and best practices.  
The fact that I could implement such a complex project, spanning web game 
development, machine learning, and deployment, entirely on my own and in such a short 
time, highlights the paradigm shift brought about by generative AI in software 
development. It’s remarkable how these tools enabled me to work effectively without 
deep prior implementation knowledge in this domain. 
That said, the success of the project also underscores the critical role of human 
oversight. I had to guide the AI tools carefully, defining the general solution design and 



Andreas T. Bachmeier   –  From Concept to Deployment: Building a Web App with an AI-Powered Backend 28 

approach while steering the development process. My understanding of the overall 
architecture and ability to identify and address specific issues—such as library version 
conflicts and incompatibilities—were essential in navigating challenges where the AI 
tools struggled or got stuck. This reinforces the notion that while AI tools significantly 
amplify productivity, they cannot entirely replace human expertise and decision-making 
(yet). 
Overall, this project was both demanding and immensely fulfilling. It offered an incredibly 
steep learning curve, allowing me to delve into new domains and tackle a wide range of 
technical challenges. At the same time, it was a lot of fun, as I witnessed the power of 
GenAI tools in action, transforming an ambitious idea into a fully functional application. 
Watching my agent learn step by step and steadily improve its performance was an 
incredibly exciting experience. 
This project has demonstrated the evolving role of AI in software development, where 
humans and AI collaborate to achieve results that would have seemed daunting not long 
ago. 
 
If you’re interested in diving deeper into the code, you can find my GitHub repository for 
this project linked [here]. I hope you enjoy playing Cosmic Voyager as much as I enjoyed 
creating it! 
You can play the deployed game yourself and try to achieve a score above 2000 as well 
as try the AI mode right [here]. 
 
Thanks and have fun! 
 
Best, Andy 
 

https://github.com/andreas-t-bachmeier/cosmic_voyager
https://huggingface.co/spaces/AndiB93/CosmicVoyage_RL
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Finally, a  nice illustration for the project from DALL·E. 
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